Grouping in images: from local to multi-local classification

نویسندگان

  • Joes Staal
  • Stiliyan N. Kalitzin
  • Max A. Viergever
چکیده

A method is presented that uses grouping to improve local classification of image primitives. The grouping process is based upon a spin-glass system, where the image primitives are treated as possessing a spin. The system is subject to an energy functional consisting of a local and a bilocal part, allowing interaction between the image primitives. Instead of defining the state of lowest energy as the grouping result, the mean state of the system is taken. In this way, instabilities caused by multiple minima in the energy are avoided. The means of the spins are taken as the a posteriori probabilities for the grouping result. The energy functional is defined in such a way, that in case of no interactions between the elements, the means of the spins equal the a priori local probabilities. The grouping process enables the fusion of the a priori local and bilocal probabilities into the a posteriori probabilities. The method is illustrated both on grouping of line elements in synthetic images and on vessel detection in retinal fundus images. Keywords— Statistical Pattern Recognition, Statistical Learning, Bayesian Grouping.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis

Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...

متن کامل

Optimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach

In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...

متن کامل

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

متن کامل

MTPHs, an Aesthetic Aspect of Local Architecture of Lenjanat

Among the variety and diversity of pigeon houses, Multi-Tier Pigeon Houses (MTPHs) are distinguished from the functional and aesthetic point of view and are considered as a specific local architectural sights of Lenjanat. However, few studies have been conducted to study this type of pigeon house and these constructs have remained unknown. In this study we have conducted library and field studi...

متن کامل

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002